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Abstract— Detecting loop closures in 3D Light Detection and
Ranging (LiDAR) data is a challenging task since point-level
methods always suffer from instability. This paper presents a
semantic-level approach named GOSMatch to perform reliable
place recognition. Our method leverages novel descriptors,
which are generated from the spatial relationship between
semantics, to perform frame description and data association.
We also propose a coarse-to-fine strategy to efficiently search for
loop closures. Besides, GOSMatch can give an accurate 6-DOF
initial pose estimation once a loop closure is confirmed. Exten-
sive experiments have been conducted on the KITTI odometry
dataset and the results show that GOSMatch can achieve robust
loop closure detection performance and outperform existing
methods.

I. INTRODUCTION

Loop closure detection is a problem associated with iden-
tifying places visited previously. It is a crucial part of Simul-
taneous Localization and Mapping (SLAM). During SLAM,
pairwise scan matching odometry inevitably accumulates
pose drift. Reliable loop closure detection is a key technique
for SLAM systems to correct the drift error [1]. Though
many vision-based methods have been proposed in recent
years [2]–[4], it may draw unreliable results in the cases
of dramatic changes on illumination [5] or viewpoint [6].
LiDAR, unlike cameras [7], senses the surrounding environ-
ment by generating high resolution 3D points with accurate
measurements. It can work under unfavorable illumination
conditions but also provide more geometric information.
Therefore, the LiDAR-based loop closure detection task has
attracted significant research attention.

Generally, traditional LiDAR-based methods use local
keypoints [8]–[11] or other global features [12]–[18] to
extract pointwise descriptors from point clouds and sub-
sequently compare the descriptor of the query scan with
the descriptors of historical scans to finally recognize the
previously-visited places. These types of approaches place
much emphasis on local details but ignore high-level feature
constraints. Instead of defining revisited places by geomet-
ric points or other point-level features, humans understand
the entire scenes from a more macro perspective [19], by
recognizing objects and their relative positions in three-
dimensional space.
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Inspired by the way humans identify places, we propose
a novel approach that utilizes semantic objects in the scenes
to detect loop closures. A couple of novel global and local
descriptors formed by these semantic objects are introduced.
The global descriptors are designed to efficiently seek the top
similar loop candidates and the local descriptors are used to
calculate the one-to-one correspondences of the semantics
in two point clouds. A geometric verification step is then
exploited to identify loop closures.

To the best of our knowledge, this is the first work that
leverages object-level semantics to detect loop closures in
3D laser data. The main contributions of this paper are
summarized as follows:
• We propose GOSMatch, an object-based approach for

reliable place recognition in the urban driving environment
based on LiDAR-only observations.
• New kinds of global and local descriptors are investi-

gated for efficiently two-step loop searching, which encode
spatial relationship between semantic objects.
• We perform extensive experimental validation against

other state-of-the-art methods on a large public dataset and
also publish the implementation of GOSMatch at https:
//github.com/zhuyachen/GOSMatch.

The rest of this paper is organized as follows: Section II
reviews the previous literature our work relates to. Next, we
describe the presented loop closure detection framework in
Section III. Section IV shows the experiment results on the
KITTI odometry dataset. Finally, we conclude in Section V.

II. RELATED WORK

Although detecting loop closures from 3D point clouds
has been intensively studied in the past decades, it remains
an open problem in SLAM systems.

A. Traditional LiDAR-based place recognition

One kind of methods utilize local features for place recog-
nition. Bosse and Zlot [8] extract regional shape descrip-
tors from randomly selected keypoints in the point clouds.
Subsequently, a voting strategy is used to find the nearest
neighbor among the keypoints to recognize places. Steder
et al. [9] extract feature description vector of each keypoint
in a transformed range image. Then a kd-tree is exploited to
process the high dimensional vectors efficiently. To achieve a
higher recognition performance, the Normal Aligned Radial
Feature (NARF) local descriptor and a bag-of-words (BoW)
matching approach are employed in their extension work
[10].
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Fig. 1. The block diagram of GOSMatch. First, we segment the semantics from the raw point cloud. Then, a histogram-based graph descriptor is
established for a fast nearest neighbor search. Note that we omit some edges in the undirected complete graph and we reduce it to a 2D representation for
clarity. Next, we compare the vertex descriptors of the query point cloud and the retrieved candidates, a 6D initial pose estimation and a loss value are
eventually derived from the geometric verification step.

Another kind of typical approaches focus on extracting
the global representation of point cloud, which are usually
presented in the form of histograms, such as VFH [17], ESF
[18] and Z-Projection [16]. An appearance-based method
[12] is proposed based on the Normal Distribution Transform
(NDT) algorithm. After discretizing the clouds into cubes,
the shape properties of each cell can be determined from the
covariance matrix. By combining them, a surface shape his-
togram representing the whole cloud can be obtained. Giseop
Kim [15] proposes Scan Context, a descriptor that encodes
the max height of points in each divided bin into a 2D
matrix. Since matching the matrix-type descriptors requires
heavy computational cost, Kim extracts ring key from Scan
Context to build kd-tree and speed up the searching process.
He et al. [14] project 3D points on multiview 2D planes and
concatenate all singular vectors derived from these planes as
the point cloud descriptor. Rohling et al. [20] propose a 1D
histogram of point range distribution as a global point cloud
descriptor. The Wasserstein metric is then used to compare
the histograms for place recognition.

B. Place recognition based on high-level descriptors

While local descriptors always lack the overall-description
ability and global descriptors suffer from rotational variance
problem easily, Shan et al. [21] instead extract more distinc-

tive descriptors like edge and planar features from ground
points and segmented points respectively. Then, Iterative
Closest Point (ICP) is performed to match feature correspon-
dences when finding a loop closure. Dube et al. propose
SegMatch [22] that match clustering segments to obtain
a more general and robust solution for place recognition.
However, SegMatch takes so much computing cost that the
whole loop closure detection framework can only update at
1 Hz.

C. Data association with graph representation

Graph matching plays an important role in coping with
the pairwise data association problem. Specifically, Graph
representation is a usual approach to describe the objects as
well as their topology. In this case, finding the association of
the objects between two places is therefore transformed into
calculating the vertices and edges correspondences between
graphs. However, finding an exact solution to this problem is
always NP-hard. Bailey et al. [23] generate a correspondence
graph and then search maximum clique in it to obtain exact
correspondences between vertices and edges in two graphs.
However, this method is only suitable for matching graphs
with a small-sized number of vertices.

To avoid the prohibitive computation cost, it is typical
to alternatively use tolerable approximate solutions. One
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attempt is to work with a graph kernel based on random
walk technique [24]. For each node in the graph, it generates
numerous walking sequences as a node descriptor, following
a matching step to find the node-to-node correspondences.
Moreover, Fisher et al. [25] use the graph kernel method
proposed in [26] to compare the similarity between relation-
ship graphs for scene recognition.

III. METHOD

The block diagram of the proposed method is depicted
in Fig. 1. It consists of four main modules: semantic detec-
tion, graph descriptor generation, vertices matching, and
geometric verification.

A. Semantic Detection

According to [27], valuable semantic features should be
stable, distinctive and view-independent. We focus on de-
tecting parked vehicles, trunks, and poles as they are the
common semantic features with such attributes in the city
road scene. Though the parked vehicle is a kind of potentially
movable object, which means parked vehicles may move
away and new vehicles may come to stop at some point,
the time interval of each loop closure detection task is
relatively short in practice. Therefore, in our experiment, we
consider the parked vehicles to be as critical as any other
semantic features and we assume that the positions of parked
vehicles in the same place does not change a lot during two
observations.

We employ RangeNet++ [28], a state-of-the-art deep learn-
ing architecture specifically designed for the semantic seg-
mentation task in 3D LiDAR data. This end-to-end network
can classify each point in the original point cloud. It is
important to note that, unlike trunks and poles, it is unable
to determine whether vehicles are parked or moving based
on one point cloud, thus we utilize a front-end odometry
to estimate the speed of the vehicles to simply distinguish
between moving vehicles and parked vehicles.

Once we get the semantic labels, the Euclidean clustering
algorithm is performed to retrieve objects. For all objects, we
compute their centroids to represent their spatial locations in
the point cloud.

B. Graph Descriptor Generation

A single LiDAR scan P is described by an undirected
complete graph G =< V ,E > , where V ,E represents
the vertices set and the edges set respectively. We consider
the locations of semantic objects which are gained from
the semantic detection module as vertices in G while each
edge eij =< vi, vj > in E represents the Euclidean
distance between the vertex vi and vj . Classified by semantic
category, there are three kinds of vertices with different
semantic categories in V (vehicle, trunk and pole) and six
kinds of edges in E (vehicle-vehicle, trunk-trunk, pole-pole,
vehicle-trunk, trunk-pole and pole-vehicle).

The whole histogram-based graph descriptor consists of
six parts, which correspond to the six edge types in E.
For instance, we shall introduce the procedure of calculating

one of the six parts by using the edges in Epole−trunk. We
assume a constant bin count b and an interval I range from
the shortest edge length lmin to the possible longest edge
length lmax:

I = [lmin, lmax] (1)

We divide I into mutually exclusive and separated subinter-
vals, the size of each subinterval can be calculated by the
following formulation:

∆I =
1

b
(lmax − lmin) (2)

Therefore, each bin corresponds to one of the disjunct
subintervals

Ik = [lmin + k ·∆I, lmin + (k + 1) ·∆I] (3)

Then, this part of graph descriptor formed by Epole−trunk

can be denoted as:

hpole−trunk = (h0, h1, . . . , hb−1) (4)

where
hk =

∣∣{e ∈ Epole−trunk : l(e) ∈ Ik
}∣∣ (5)

Once the other five kinds of edges are processed, the com-
plete graph descriptor Hgraph for point cloud P can be
established by concatenating the six parts:

Hgraph =
(
hvehicle−vehicle, . . . ,hpole−vehicle

)
(6)

graph descriptors for each historical scan are stored in
a database. When coming in a query point cloud, they are
used to construct a kd-tree to perform the standard k-nearest
neighbor search algorithm for efficiently searching the top
similar loop candidates. Then, a list of N possible loop
candidates can be obtained.

C. Vertices Matching
In this section, we introduce the vertex descriptor to de-

scribe one vertex in the graph. Similar to graph descriptor,
vertex descriptor is also histogram-based. The difference is
that the edges considered in vertex descriptor are no longer
of the whole graph, but the edges connected to the described
vertex v. To build a vertex descriptor for v ∈ V pole,
there are only three kinds of edges need to be considered
because one of the two endpoints that make up a edge have
been identified to be a pole. Similar to graph descriptor,
one kind of edges can form one of the three parts of the
vertex descriptor, which can be described as:

hpole−vehicle = (h0, h1, . . . , hb−1) (7)

where

hk =
∣∣{e ∈ Epole−vehicle : l(e) ∈ Ik, e ∈ ev

}∣∣ (8)

where ev represents the edges that connected to v. After con-
catenating the three parts, the vertex descriptor Hvertex

for v can be finally obtained:

Hvertex =
(
hpole−vehicle,hpole−trunk,hpole−pole

)
(9)

We then match the vertex descriptors in the query point
cloud and the ones in the candidate point cloud by Euclidean
distance to find the correspondences.
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Fig. 2. Precision-Recall curves for KITTI dataset

D. Geometric Verification

This step focuses on selecting a set of geometrically con-
sistent correspondences for each loop candidate. A typical
RANSAC-based algorithm is used to refine the correspon-
dence set [29]. In each RANSAC iteration, we use the
SVD method to find a closed-form 6-DOF transformation
solution to the Absolute Orientation Problem [30]. If this
transformation matrix can lead to more inliers, we update it.

For each candidate, we evaluate the loop closure detection
loss using the formulation as follows:

loss =

√√√√√ |C|∑
i=1

(
T ·
[
ciq
1

]
−
[
cic
1

])2

|C|
(10)

where C represents the refined correspondence set between
query scan and its loop candidate, T represents the trans-
formation matrix, ciq and cic represent the i-th 3D points
in C that belong to the query scan and the candidate scan
respectively.

The candidate scan with the minimum loss lossmin is
picked to judge that if there exists loop closure according
to a threshold β:

Lβ(Pq, Pc) =

{
true if lossmin < β
false otherwise

(11)

Note that the two places are considered as a loop closure
only if lossmin is smaller than β and vice versa. Once a loop
closure is confirmed, we regard the transformation matrix as
the 6-DOF initial pose.

IV. EXPERIMENTS

In this section, the proposed graph-based algorithm is
evaluated on the KITTI odometry dataset [31]. We perform
a comparison with other state-of-the-art loop closure de-
tection algorithms including four global descriptors: VFH,
M2DP, Scan Context, and Z-projection. We use the C++
implementation of VFH in the Point Cloud Library (PCL)
[32], the open-sourced Matlab code of M2DP and Scan
Context. Moreover, the proposed GOSMatch approach and
the Z-projection method are implemented by ourselves on
the Matlab platform. All experiments are conducted on an

Intel Core i7-6820HQ with 16 GB RAM and an Nvidia Titan
X with 12 GB RAM.

A. Dataset and experiment settings
There are a total of 11 sequences with ground truth pose in

the KITTI odometry dataset. We select sequence 00, 05, 07,
08 to evaluate the proposed method as they have loops and
are collected in the urban environment. Among these four
sequences, 08 is the only one that can be used to test the
rotation-invariance performance of the algorithms because all
real loops in sequence 08 are in the opposite direction.

The RangeNet++ is trained by using the labeled point
cloud data from the SemanticKITTI dataset [33], which
provides dense point-wise labels for each sequence in KITTI
odometry dataset. Specifically, For each sequence we picked,
we train one unique model of RangeNet++ by using the
remaining 10 sequences.

There is a situation in the KITTI dataset where the car
passes through the same wide crossroads twice, once in
the upper left corner and another time in the lower right
corner. Thus, we consider the detection is a true positive
loop closure if the Euclidean distance of two places is less
than 15m. For each query, we exclude a total of 100 scans to
prevent the query scan from matching to its time-neighbors.
Z-Projection, as well as VFH, are both surface normal-based
methods, both of them require a normal-computation step.
To facilitate the implementation of the code, we adopt the
second way for Z-Projection to calculate the normals which
are mentioned in [16], and the bin number in Z-Projection
is set to 202. Normal radius is the only parameter for VFH,
and we set it to be 0.03m in this experiment. The candidate
number of Scan Context is set to 50 since Kim et al. [15]
illustrated that it had a better performance. For the remaining
parameters of Scan Context, we use the default values
proposed in the open-sourced code. Similar to Scan Context,
we use the parameters mentioned in the available code for
M2DP. Considering the semantic segmentation ability in our
method, we set lmin = 0, lmax = 60, b = 60 and set N = 10
for all validation datasets.

B. Loop closure detection performance
In the first experiment, we assess the performance of

GOSMatch. Fig. 2 shows the precision-recall curves [34].
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(a) Query Point Clouds (b) Detected Point Clouds (c) ICP without initial pose (d) Alignments from initial pose (e) ICP with initial pose

Fig. 3. The loop closure detection examples in KITTI 00 for the initial pose accuracy. (a) The frame numbers of the query point cloud are 1415 (up) and
4540 (down). (b) The frame numbers of the detected point cloud are 586 (up) and 116 (down). (c) The ICP registration results without the initial poses.
(d) Align query and detected point clouds using the initial poses. (e) The ICP registration results with the initial poses.

TABLE I
RECALL AT 100% PRECISION WITH DIFFERENT n VALUES

n = 0 n = 1 n = 2 n = 3 n = 4
KITTI 00 95.36% 94.49% 92.87% 92.61% 89.13%
KITTI 05 74.51% 71.14% 67.74% 55.58% 50.61%
KITTI 07 92.01% 89.21% 87.84% 88.61% 86.14%
KITTI 08 78.44% 77.91% 76.49% 68.64% 66.90%

Note that GOSMatch-labeled uses the point cloud data with
labels as input while the other five methods use the raw
point cloud data as input. Methods that are not object-
based, especially Z-Projection and VFH, have shown poor
performance. The reason is that these descriptors heavily
depends on the accuracy of the normal estimation step.
Besides, these types of descriptors only care about the angles
formed by the normal with the centroid of the point cloud or
with z-axis direction vectors but ignore the geometric space
information. In this case, if the probability distribution of
normal vectors is similar between two different places, these
methods easily derive non-distinctive descriptors.

Scan Context and M2DP perform a comparatively good
result in our experiment. However, they are unable to handle
the challenging KITTI 08 dataset where all loops are gen-
erated when the car revisits the same place in the opposite
direction. Only the rotational invariant algorithms can detect
loop closures in this sequence with high performance. M2DP
can not successfully detect loop closures in KITTI 08 and
the precision-recall curve of Scan Context also decreases
dramatically.

Overall, GOSMatch performs slightly worse than
GOSMatch-labeled as the effect of the point classification
errors from RangeNet++. Even so, both of them exhibit
significant robustness and competitive rotation-invariance
performance comparing with other methods. Our approach

benefits from stable descriptors formed by valuable
semantics. Such descriptors will not be greatly affected even
if the viewpoint changes a lot, thus we can perform reliable
place recognition.

C. Noise sensitivity

This section focus on evaluating the robustness of GOS-
Match against noise. In this experiment, we choose to
extract segments directly from the labeled point cloud data
provided by SemanticKITTI for avoiding classification noise
interference. We randomly remove X objects in each scan to
simulate changes in the vehicle positions (e.g. the previously
parked vehicles have driven away) and some misidentifica-
tions, X is a random variable and X ∼ B(n, 12 ), where n
means the maximum number of objects that can be removed
in each scan. We test the effect of different n values on the
four sequences and we perform 100 runs for each n value
in each sequence. The average recall at 100% precision are
presented in TABLE I.

D. Initial pose accuracy

The goal of this section is to evaluate the initial pose
obtained from GOSMatch. To get more reliable registration
results, the initial pose can be provided to ICP. Some
examples from KITTI 00 are depicted in Fig. 3. In Fig. 3 (e),
the results show that query and detected point clouds can be
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(b) KITTI 05(a) KITTI 00 (c) KITTI 07 (d) KITTI 08

Fig. 4. Computation time for each KITTI sequence

(b) KITTI 05(a) KITTI 00 (c) KITTI 07 (d) KITTI 08

Fig. 5. ICP point-to-point RMSE for each KITTI sequence

TABLE II
AVERAGE TIME COSTS ON KITTI 00 IN SECONDS

Descriptors
calculation

Loop
searching

Total time
per scan

Scan Context 0.0424 0.0514 0.0938
M2DP 0.2461 0.0220 0.2681
Z-Projection 0.4045 0.0201 0.4246
VFH 0.5625 0.0379 0.6004
GOSMatch 0.0183 +0.1892* 0.0278 0.2353
*semantic detection execution time

successfully registered using the initial poses. However, in
Fig. 3 (c), we can see that without the provided initial poses,
the registration procedures of ICP can easily fail. Besides,
the initial poses obtained from GOSMatch are shown in
Fig. 3 (d). The alignment results using the initial poses are
close to results which are optimized by the ICP algorithm,
revealing the high accuracy of the estimated initial pose.
The experimental results indicate that GOSMatch is able to
predict a precise initial pose when detecting a loop closure.

In our experiment, we also test and verify the effect of
the initial pose on the performance of ICP. The computation
time and point-to-point RMSE of ICP with and without the
initial pose is given in Fig. 4 and Fig. 5 respectively. The
ICP registration procedure benefits a lot from the initial pose
GOSMatch provided.

E. Computational complexity

The computational requirements for different methods
are evaluated on KITTI 00 and the concrete results are
shown in Table II. Because our method is different from
traditional methods in that GOSMatch requires a semantic

detection step, so we separately show the time of calculating
the two graphical descriptors and the time of semantic
detection. In addition, only the semantic detection module
in our method is performed on the GPU, all the other
experiments are conducted on the CPU. The searching time
of GOSMatch consists of searching k-nearest neighbors,
matching vertex descriptors and verifying the geometric
consistency. It is important to note that the time GOSMatch
takes depends heavily on the semantic detection module,
therefore a faster object detection algorithm can significantly
improve the execution efficiency of GOSMatch.

V. CONCLUSIONS

In this paper, we propose GOSMatch, an algorithm for
detecting loop closures in 3D point clouds based on two
graphical descriptors. One is designed for efficiently search-
ing the similar loop candidates from the historical point
clouds, the other one is for further meticulous matching to
give a solution to vertex-to-vertex correspondences between
two places. Unlike the previous works, our method performs
at a semantic level which is not only robust to environment
changes but also able to give an accurate 6D initial pose esti-
mation. The results of the exhaustive evaluation experiments
show the potential of using relative position relationship
between objects, which is significantly helpful for reliable
loop closure detection.
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